Solution 13

Supplementary Problems

1. Verify the identity

$$
\nabla \times \nabla f=\mathbf{0}
$$

for any function f.
Solution. This is a direct computation. The converse is interesting: If $\nabla \times \mathbf{F}=0$ for some vector field \mathbf{F}, is there some function f such that $\mathbf{F}=\nabla f$? The answer is yes when \mathbf{F} is defined in a simply-connected region. Note that the condition $\nabla \times \mathbf{F}=0$ is nothing but the component test.
2. Verify the identity

$$
\nabla \cdot \nabla \times \mathbf{F}=0
$$

for any vector field \mathbf{F}. Use this fact to show that $x \mathbf{i}+y \mathbf{j}+x^{2} z \mathbf{k}$ cannot be the curl of some vector field.
Solution. Let $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$. We have

$$
\nabla \cdot \nabla \times \mathbf{F}=\left(P_{y}-N_{z}\right)_{x}-\left(P_{x}-M_{z}\right)_{y}+\left(N_{x}-M_{y}\right)_{z}=0 .
$$

If there is some \mathbf{F} such that $\nabla \times \mathbf{F}=x \mathbf{i}+y \mathbf{j}+x^{2} z \mathbf{k}$, then $\nabla \cdot \mathbf{F}=0$, but now

$$
\nabla \cdot\left(x \mathbf{i}+y \mathbf{j}+x^{2} z \mathbf{k}\right)=2+x^{2}>0
$$

contradiction holds.
Note. Like in (a), we could raise the converse question: When $\nabla \cdot \mathbf{G}=0$, can we find a vector field \mathbf{F} so that $\nabla \times \mathbf{F}=\mathbf{G}$? The answer again relies on the topology of the region in which \mathbf{G} defines. It is yes when the region is the entire space.

