Solution 13

Supplementary Problems

1. Verify the identity

$$\nabla \times \nabla f = \mathbf{0}$$

for any function f.

Solution. This is a direct computation. The converse is interesting: If $\nabla \times \mathbf{F} = 0$ for some vector field \mathbf{F} , is there some function f such that $\mathbf{F} = \nabla f$? The answer is yes when \mathbf{F} is defined in a simply-connected region. Note that the condition $\nabla \times \mathbf{F} = 0$ is nothing but the component test.

2. Verify the identity

 $\nabla\cdot\nabla\times\mathbf{F}=0$

for any vector field **F**. Use this fact to show that $x\mathbf{i} + y\mathbf{j} + x^2 z\mathbf{k}$ cannot be the curl of some vector field.

Solution. Let $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$. We have

$$\nabla \cdot \nabla \times \mathbf{F} = (P_y - N_z)_x - (P_x - M_z)_y + (N_x - M_y)_z = 0$$

If there is some **F** such that $\nabla \times \mathbf{F} = x\mathbf{i} + y\mathbf{j} + x^2z\mathbf{k}$, then $\nabla \cdot \mathbf{F} = 0$, but now

$$\nabla \cdot (x\mathbf{i} + y\mathbf{j} + x^2 z\mathbf{k}) = 2 + x^2 > 0,$$

contradiction holds.

Note. Like in (a), we could raise the converse question: When $\nabla \cdot \mathbf{G} = 0$, can we find a vector field \mathbf{F} so that $\nabla \times \mathbf{F} = \mathbf{G}$? The answer again relies on the topology of the region in which \mathbf{G} defines. It is yes when the region is the entire space.